Mandyam Srinivasan "VSS 2014 Keynote: More than a Honey Machine: Vision and Navigation in Honeybees and Applications to Robotics"
Flying insects are remarkably adept at seeing and perceiving the world and navigating effectively in it, despite possessing a brain that weighs less than a milligram and carries fewer than 0.01% as many neurons as ours does. Although most insects lack stereo vision, they use a number of ingenious strategies for perceiving their world in three dimensions and navigating successfully in it.
The talk will describe how honeybees use their vision to stabilize and control their flight, and navigate to food sources. Bees and birds negotiate narrow gaps safely by balancing the apparent speeds of the images in the two eyes. Flight speed is regulated by holding constant the average image velocity as seen by both eyes. Visual cues based on motion are also used to compensate for crosswinds, and to avoid collisions with other flying insects. Bees landing on a surface hold constant the magnitude of the optic flow that they experience as they approach the surface, thus automatically ensuring that flight speed decreases to zero at touchdown. Foraging bees gauge distance flown by integrating optic flow: they possess a visually-driven ‘odometer’ that is robust to variations in wind, body weight, energy expenditure, and the properties of the visual environment. Mid-air collisions are avoided by sensing cues derived from visual parallax, and using appropriate flight control maneuvers.
Some of the insect-based strategies described above are being used to design, implement and test biologically-inspired algorithms for the guidance of autonomous terrestrial and aerial vehicles. Application to manoeuvres such as attitude stabilization, terrain following, obstacle avoidance, automated landing, and the execution of extreme aerobatic manoeuvres will be described.
This research was supported by ARC Centre of Excellence in Vision Science Grant CE0561903, ARC Discovery Grant DP0559306, and by a Queensland Smart State Premier’s Fellowship.
The talk will describe how honeybees use their vision to stabilize and control their flight, and navigate to food sources. Bees and birds negotiate narrow gaps safely by balancing the apparent speeds of the images in the two eyes. Flight speed is regulated by holding constant the average image velocity as seen by both eyes. Visual cues based on motion are also used to compensate for crosswinds, and to avoid collisions with other flying insects. Bees landing on a surface hold constant the magnitude of the optic flow that they experience as they approach the surface, thus automatically ensuring that flight speed decreases to zero at touchdown. Foraging bees gauge distance flown by integrating optic flow: they possess a visually-driven ‘odometer’ that is robust to variations in wind, body weight, energy expenditure, and the properties of the visual environment. Mid-air collisions are avoided by sensing cues derived from visual parallax, and using appropriate flight control maneuvers.
Some of the insect-based strategies described above are being used to design, implement and test biologically-inspired algorithms for the guidance of autonomous terrestrial and aerial vehicles. Application to manoeuvres such as attitude stabilization, terrain following, obstacle avoidance, automated landing, and the execution of extreme aerobatic manoeuvres will be described.
This research was supported by ARC Centre of Excellence in Vision Science Grant CE0561903, ARC Discovery Grant DP0559306, and by a Queensland Smart State Premier’s Fellowship.